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xx

As teachers, we know that undergraduate science education is evolving. Simply convey-
ing facts does not produce a scientifically literate student, a long-held perception now 
reinforced by numerous studies. Students of science need more: a better window on 
what science is and how it is done, a clear presentation of key concepts that rises above 
the recitation of details, an articulation of the philosophical underpinnings of the scien-
tific discipline at hand, exercises that demand analysis of real data, and an appreciation 
for the contributions of science to the well-being of humans throughout the world. As 
undergraduate science educators rise to these challenges, we are faced with both higher 
numbers of students and declining resources. How can we all do more with less? 

Textbooks are an important part of the equation. A good textbook must now be 
more than a guide to the information that defines a discipline. For instructors, a text-
book must organize information, incorporate assessment tools, and provide resources 
to help bring a discipline to life. For students, a textbook must relate science to everyday 
experience, highlight the key concepts, and show each student the process that gener-
ated those key concepts.

This book had its genesis at a meeting of the authors in Napa Valley in January 
2006. From the outset, we set ambitious goals designed to address the key challenges 
we face as teachers.

students see science as a set of facts rather than an active human 
 endeavor. Molecular biology has a wealth of important stories to tell. We  wanted 
to convey the excitement that drives modern molecular biology, the creativity at the 
bench, and the genuine wonder that takes hold as the workings of a new biological 
process are revealed. This theme is set in the first chapter, dedicated in large measure 

to an introduction to the scientific process. Every chapter then begins with a 
Moment of Discovery, highlighting a researcher’s own description of a memo-
rable moment in his or her career. After Chapter 1, every chapter ends with a 
How We Know section, with stories relating the often circuitous path to a new 
insight.  Additional  anecdotes— scientists in action—are woven into the text 
and the  accompanying Highlights. As students read the text, the laboratories 
and the people behind the discoveries will never be far away. 

This second edition is an update, and much more. It has allowed us to 
refine the initial vision we had when we started this project and to augment 
that vision with unparalleled resources that will bring the subject to life for 
students and educators alike.

 MoMEnt oF dIscovEry

Scientific breakthroughs represent the exhilarating culmination of a lot of 
hard work. Each chapter opens with a description of a significant break-
through in molecular biology, told by the scientist who made the discovery. 
The scientists featured in the Moments of Discovery are David Allis, Norm 
Arnheim, Bonnie Bassler, Steve Benner, James  Berger, Carlos Bustamante, 

Preface
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Rose Byrne, Jamie Cate, Joe DeRisi, Roxana Georgescu, Lin He,  Tracy Johnson, 
Melissa Jurica, Judith Kimble, Robert Lehman, Steve Mayo, Harry  Noller, Smita Patel, 
Lorraine Symington, Jack Szostak, Robert Tjian, and Wei Yang. 

 hoW WE KnoW

Each chapter ends with a How We Know section that combines fasci-
nating stories of research and researchers with experimental data for 
students to analyze.

students often view science as a completed story. The 
 reality is far different. Data can take a researcher in unexpected  directions. 
An experiment designed to test one hypothesis can end up revealing 
something quite different. The analysis of real data is a fundamental skill 
to be honed by every student of science. We have tried to address this 
need aggressively. Each chapter in this text features a challenging set of 
problems, including at least one requiring the analysis of data from the 
scientific literature. Many of these are linked to the discoveries described 
in the How We Know sections. Each chapter also ends with some Unan-
swered Questions, providing just a sampling of the endless challenges that 
remain for those with the motivation to tackle them.

unansWErEd QuEstIons 

A short section at the end of each chapter describes important 
areas still open to discovery, showing students that even well-
covered subjects, such as nucleic acid structure and DNA repli-
cation, are far from fully explored.

 End-oF-chaPtEr ProBlEMs 

Extensive problem sets at the end of each chapter give 
students the opportunity to think about and work with 
the chapter’s key ideas. New problems have been add-
ed in each chapter for this second edition. Each prob-
lem set concludes with a Data Analysis Problem, giving 
students the critical experience of interpreting real 
research data. Solutions to all problems can be found at 
the back of the book.
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 KEy convEntIons

In brief paragraphs, the Key Conventions clearly lay out for stu-
dents some fundamental principles often glossed over. 

 IllustratIons 

Good figures should speak for themselves. We have 
worked to keep our figures  simple and the figure leg-
ends as brief as possible. The illustrations in the text are 
the  product of close collaboration with our colleague 
Adam Steinberg. Together with the talented artists at 
Dragonfly Media Group, Adam has helped to hone and 
implement our vision. 

students see evolution as an abstract theory. 
Every time a molecular biologist studies a developmen-
tal pathway in nematodes, identifies key parts of an 
enzyme active site by determining what parts are con-
served among species, or searches for the gene under-
lying a human genetic disease, he or she is relying on 
evolutionary theory. Evolution is a foundational concept, 
upon which every discipline in the biological sciences is 
built. In this text, evolution is a theme that pervades ev-
ery chapter, beginning with a major section in Chapter 1  
and continuing as the topic of many Highlights and 
chapter segments. 

 hIGhlIGhts

These discussions are designed to enhance students’  
understanding and appreciation of the relevance of each 
chapter’s material. There are four categories of Highlights:

• Medicine explores diseases that arise from defects in 
biochemical pathways, and how concepts uncovered in 
molecular biology have contributed to drug therapies 
and other treatments.
• technology focuses on cutting-edge molecular biol-
ogy methods.
• evolution reveals the role of molecular biology re-
search in understanding key biological processes and the 
connections among organisms.
• a closer look examines a wide variety of additional, 
intriguing topics.

students get lost in the details. Presenting the major concepts clearly, in the 
text as well as in the illustrations, is crucial to teaching students how science is done. 
We have worked to use straightforward language and a conversational writing style 
to draw students in to the material. We have collaborated closely with our illustrator, 
Adam Steinberg, to create clean, focused figures. Featured Key Conventions highlight 
the implicit but often unstated conventions used when sequences and structures are 
displayed and in naming biological molecules.
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ExPErIMEntal tEchnIQuEs

As researchers, we know that it is critical to understand the benefits and limitations of 
experimental techniques. We strive to give students a sense of how an experiment is 
designed and what makes the use of a particular technique or model organism appro-
priate. The techniques covered in this book are:

Ames test 424
Chemical modification interference 700
Chemical protection footprinting 700
Chemical synthesis of nucleic acids 201
ChIP-Chip 345
ChIP-Seq 345
Chromatography

Affinity chromatography 100
Using terminal tags 237
Using tandem affinity purification (TAP) tags 242

Column chromatography 100
Gel-exclusion chromatography 100
Ion-exchange chromatography 100
Thin-layer chromatography 584

CRISPR/Cas 246 
Detecting A=T-rich segments of DNA by denaturation 

analysis 197
DNA cloning 212
DNA cloning with artificial chromosomes (BACs, YACs) 218
DNA footprinting 700
DNA genotyping (DNA fingerprinting, DNA profiling, 

STR analysis) 224
DNA library creation (cDNA, genomic) 220
DNA microarrays 244
DNA sequencing

Automated Sanger sequencing 226
Deep sequencing 232
Genome sequencing techniques 260
Ion torrent 232
Next generation sequencing 229
Pyrosequencing 229
Reversible terminator sequencing 230
Sanger sequencing 226
Single molecule real time (SMRT) sequencing 230 

Electrophoresis
Agarose gel electrophoresis 199
Isoelectric focusing 277

Pulsed field gel electrophoresis (PFGE) 220
Sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis (SDS-PAGE) 100
Two-dimensional gel electrophoresis 277

Electrophoretic mobility shift assay (EMSA) 700 
Electroporation 217
Epitope tagging 240
Haplotype analysis 269
Immunoprecipitation 242
Linkage analysis 272
Localization of GFP fusion proteins 239
Mass spectrometry 278
Northern blotting 199
Nuclear magnetic resonance (NMR) 115
Optical trapping 344
Photolithography 244
Phylogenetic analysis 270
Phylogenetic profiling 279
Polymerase chain reaction (PCR) 222

Quantitative PCR (qPCR) 222 
Reverse transcriptase PCR (RT-PCR) 222

Protein chips 280
Protein localization via indirect immuno- 

fluorescence 240
Recombinant protein expression 232
RNA interference (RNAi) 774
RNA-Seq 276
Selection and screening 217
Site-directed mutagenesis 235
Somatic cell nuclear transfer (SCNT) 538
Southern blotting 199
Transformation 217
Western blotting 241
X-ray crystallography 120
Yeast three-hybrid analysis 243
Yeast two-hybrid analysis 243

nEW and uPdatEd contEnt
The second edition addresses recent discoveries and advances, corresponding to our 
ever-changing understanding of molecular biology. In addition to the text updates listed 
here, there are numerous new figures and photos, along with significantly updated fig-
ures in every chapter. There are also new end-of-chapter problems for every chapter 
and many new Unanswered Questions. 

chapter 1
• Updated discussions of evolution and the scientific method
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chapter 2
• Updated discussion of the central dogma
• Updated and expanded discussion of the types of RNA

chapter 3
• New Moment of Discovery
• Expanded discussion of nucleosides
• Revised and expanded section: The Hydrophobic Effect Brings Together  

Nonpolar Molecules
• New section: Electronic Interactions between Bases in Nucleic Acids 

chapter 4
• Expanded section: Amino Acids Are Categorized by Chemical Properties
• Significantly expanded discussion of protein purification, including Highlight 4-1
• New section: Intrinsically Unstructured Proteins Have Versatile Binding Properties
• Expanded section on protein families
• Significantly expanded section on protein folding and computational biology

chapter 5
• New Moment of Discovery

chapter 6
• Expanded discussion of the instability of RNA
• New Highlight 6-1: DNA Nanotechnology
• New discussion of riboswitches

chapter 7
• Expanded discussion on obtaining DNA fragments to clone
• Thoroughly updated section on next-gen and other modern DNA sequencing 

technologies.
• New section: Genomic Sequencing Is Aided by New Generations of DNA 

Sequencing Methods, incorporating the exciting new advances with programmable 
nucleases 

chapter 8
• Expanded Highlight 8-1, now including discussion of the microbiome
• Updated section on noncoding DNA
• Expanded section on mass spectrometry

chapter 10
• New Moment of Discovery
• Significantly expanded discussion of histone modifications, including a new table

chapter 11
• Expanded discussion of the b sliding clamp
• Expanded discussion of the Pol III holoenzyme
• Updated and expanded discussion of eukaryotic replication forks
• Updated and expanded section: Eukaryotic Origins “Fire” Only Once per Cell Cycle
• New section: Telomeres and Telomerase Solve the End Replication Problem in 

Eukaryotes
• New Highlight 11-2: Short Telomeres Portend Aging Diseases

chapter 12
• New Moment of Discovery
• New table presenting overview of DNA repair processes
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chapter 13
• Updated and expanded sections on double-strand break repair and reconstruction 

of replication forks
• Updated section on meiotic recombination

chapter 14
• Updated and expanded introductory section on transposable elements and site-

specific recombination
• Updated and expanded section: Precise DNA Rearrangements Are Promoted by 

Site-Specific Recombinases
• Reorganized section on the use of site-specific recombination systems in 

biotechnology
• Updated and expanded sections on transposition

chapter 15
• Updated section on transcription elongation
• Updated and expanded discussion of the role of transcription factors
• Updated and expanded discussion of termination mechanisms among RNA  

polymerases

chapter 16
• Streamlined chapter organization
• Expanded discussion of P bodies

chapter 18
• Streamlined chapter organization
• Updated discussion of protein release factors
• Updated discussion of nuclear export signals

chapter 19
• Updated section: Gene Expression Is Regulated through Feedback Loops, now 

including inducer exclusion

chapter 22
• Expanded section on alternative splicing, including ESEs and ESSs
• Updated section on RNA interference
• New section: RNAs Regulate a Wide Range of Cellular Processes
• Updated section on the developmental potential of stem cells

MEdIa 

simulations
One of our central goals in tackling the revision of this textbook was to provide special 
resources to engage students (and educators) in molecular biology. New to the second edi-
tion are simulations that cover core molecular biology concepts and techniques. Created 
using the art from the text, the simulations reinforce students’ understanding by allow-
ing them to interact with the structures and processes they have encountered. A game-
like format guides students through the simulations, unlocking them in order, and mul-
tiple-choice questions after each simulation ensure that instructors can assess whether  
students have thoroughly understood each topic. These simulations are the product of 
many days of meetings among the authors, editors, and media developers. From story-
boarding to the finished product, these simulations were one of the most challenging as 
well as stimulating efforts associated with preparing the second edition. We are excited to 
present this new approach to learning key concepts.
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Nucleotide Structure (Chapter 3)
DNA/RNA Structure (Chapter 6)
PCR (Chapter 7)
Sanger Sequencing (Chapter 7)
CRISPR (Chapters 7 and 19)
DNA Replication (Chapter 11)
DNA Polymerase (Chapter 11)
Mutation and Repair (Chapter 12)
Transcription (Chapter 15)
mRNA Processing (Chapter 16)
Translation (Chapter 18)

Nature articles with assessment
These articles engage students in reading about primary re-
search and encourage critical thinking. Specifically selected for 
both alignment with the text coverage and exploration of identi-

fied difficult topics, the Nature articles include assessment questions that can be auto-
matically graded. Also included are open-ended questions that are suitable for use in 
flipped classrooms and active learning discussions either in class or online.

The simulations and Nature articles for Molecular Biology: Principles and Practice are 
available in our LaunchPad system, along with many additional resources.

This dynamic, fully integrated learning environment brings together all of our teaching 
and learning resources in one place. It also contains the fully interactive e-Book and 
other newly updated resources for students and instructors, including the following:

new clicker Questions allow instructors to integrate active learning in the classroom 
and to assess students’ understanding of key concepts during lectures.

updated Test Bank contains at least 40 multiple-choice and short-answer questions 
for each chapter.

 allows students to test their comprehension of the chapter 
concepts. The system adapts to students’ individual level of preparedness by giving 
them questions at varying levels of difficulty, depending on whether they answer a 
question without help, or they need help but eventually get the question right, or they 
are unable to answer the question. Links to the appropriate e-Book section, hints, and 
feedback help students realize where they need more practice on a topic. 

Key Term flashcards allow students to review the definitions of all the glossary terms 
and quiz themselves.

Textbook images and Tables are offered as high-resolution JPEG files. Each image 
has been fully optimized to increase type size and adjust color saturation. These images 
have been tested in a large lecture hall to ensure maximum clarity and visibility.
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1

MoMent of Discovery
A big question in the origin of life concerns 
how primitive cells might have evolved. My 
own approach to this question involved lots of 
discussions with Irene Chen and others in my lab 
about how lipid vesicles containing RNA, which 
might mimic a simple self-replicating life form, 
could be capable of dividing. In other words, 
as the amount of genetic material (here, RNA) 
increased by making more copies of itself, how 

would the increased RNA content affect the physical properties of the 
vesicle? We envisioned that osmotic pressure might make vesicles grow by 
extracting lipids from neighboring vesicles, ultimately leading to division 
by rupture and resealing. This idea seemed pretty far out, though, until 
Irene began doing experiments with vesicles containing lipids bearing 
fluorescent dyes. We could encapsulate RNA inside the vesicles and watch 
the vesicles change in size (or not) under different conditions by following 
the level of fluorescence as a function of vesicle surface area. Irene found 
that empty vesicles or vesicles “swollen” with RNA were stable over time, 
but when she mixed them together, the swollen vesicles started to grow by 
stealing lipid molecules from neighboring empty vesicles! So the system 
worked exactly as we had imagined, demonstrating that vesicle growth 
and division is a process that can occur spontaneously. 

More recently, we found that vesicles loaded with RNA can also 
take up nucleotides (the building blocks of RNA and DNA) from the 
environment, disproving an old idea that it would be hard for primitive 
cells to survive by taking up small molecules, including negatively charged 
nucleotides, from their surroundings. It has been very exciting to find that 
each potential roadblock to primitive cellular replication that we have 
explored so far can be overcome, often without requiring specialized 
catalysts or input energy.

—Jack Szostak, on his discovery of self-dividing vesicles that  
mimic growing cells

1.1 The Evolution of 
Life on Earth: 2

1.2 How Scientists Do 
Science: 12

online resources 
related to this chapter:

Nature exercise
Genome dynamics  

during experimental 
evolution

Jack Szostak [Source: © Jim 
Sugar/Corbis.]

Evolution, Science, 
and Molecular Biology1
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2   cHAPter 1: Evolution, Science, and Molecular Biology

Born in the second half of the twentieth century, 
molecular biology has only recently come of age. 
Broadly speaking, molecular biology is the study 

of essential cellular macromolecules, including DNA, 
RNA, and proteins, and the biological pathways between 
them. Over the decades, molecular biology has become 
firmly associated with the structure, function, and regu-
lation of information pathways at the molecular level. 
All of the processes required to reliably pass genetic 
information from one generation to another and from 
DNA to RNA to protein are included in this area of study. 
Of the requirements for life, it is the information in our 
genetic material that links all organisms to each other 
and documents their intertwined history. The biological 
information pathways that maintain, use, and transmit 
that information are the focus of this book.

Molecular biology may have a relatively short history, 
but its impact on the human experience is already consid-
erable. Medicine, modern agriculture, forensic science, 
and many other endeavors rely on technologies devel-
oped by molecular biologists. Our current understanding 
of information pathways has given rise to diagnostic tests 
for genetic diseases, forensic DNA analysis, crops with 
improved yields and resistance to  disease, new cancer 
therapies, an unprecedented ability to track pandemics, 
new wastewater treatment methods, new approaches to 
the generation of energy, and much more. Many of these 
advances are chronicled throughout this textbook.

This first chapter introduces three of the most impor-
tant themes that link the book’s topics. The first theme 
concerns the two key requirements for life: biological 
information, the genetic instructions that shape every 
living cell and virus, and catalysis, a capacity to accel-
erate critical molecular processes. Molecular biology 
deals with both, and much of the discipline focuses on 
the interplay between information-containing polymers 
(nucleic acids and proteins) and the enzymes that cata-
lyze and regulate their synthesis, modification, function, 
and degradation. 

The second theme is evolution. Many of the pro-
cesses we will consider can be traced back billions of 
years, and a few can be traced to the last universal com-
mon ancestor. Genetic information is a kind of molecular 
clock that can help define ancestral relationships among 
species. Shared information pathways connect humans 
to every other living organism on Earth and to all the 
organisms that came before. 

The third theme in this book is how we look at mo-
lecular biology as a scientific endeavor. Any scientific 
discipline is a construct not only of the knowledge it 
has generated but also of the human processes behind 
that knowledge. Molecular biology has both an inspira-
tional history and a promising future, to be forged by 
contributors as yet unnamed. Breakthroughs rely on 

more than technology and ideas: they require an under-
standing of the scientific process and are informed by 
the struggles of the past. 

1.1 tHe evolution of life on eArtH 

All organisms on Earth are connected by an evolutionary 
journey spanning more than 3 billion years. The diversity 
of life we see around us is the sum of a limitless number 
of mutations, changes in genetic information that are 
usually subtle but sometimes dramatic. When Charles 
Darwin proposed that natural selection acts on variation 
in populations, he had no knowledge of the mechanisms 
that give rise to that variation. Such mechanisms lie at 
the heart of modern molecular biology.

What is life?

Almost anyone can distinguish a living organism from an 
inanimate object. However, a rigorous scientific descrip-
tion of life is harder to achieve. Life differs from non-
life in identifiable ways, as summarized in Figure 1-1. 
Organisms move, reproduce, grow, and alter their envi-
ronment in ways that inanimate objects cannot. But such 
characteristics alone provide an unsatisfying definition 
of life, particularly when a few of them may be shared 
by inanimate substances. In 1994, the United States Na-
tional Aeronautics and Space Administration (NASA) 
convened a panel to consider the question, “What is 
life?” A simple definition resulted: Life is a chemical sys-
tem capable of Darwinian evolution. The importance of 
evolutionary theory to all biological sciences gains full 
expression in this concise statement.

Every living system we know about has several re-
quirements for its existence. Two of these—raw materials 
and energy—are supplied by a home planet endowed with 
an abundance of both. Molecules in Earth’s life forms are 
made up largely of the elements hydrogen, oxygen, nitro-
gen, and carbon. These are the smallest and most abun-
dant atoms that can make, respectively, one, two, three, 
and four covalent bonds with other atoms. The molecules 
formed by these elements tend to be quite stable and can 
be very complex. The energy required for life is derived 
from the sun. Plants and photosynthetic microorganisms 
collect and store the energy derived from sunlight in the 
chemical bonds of complex biomolecules. 

A third requirement for a living system is an enve-
lope, creating a barrier between the living and inanimate 
worlds and establishing a means of selective interaction 
between a cell and its environment. The work of Jack 
Szostak, chronicled in this chapter’s Moment of Discov-
ery, may be replicating some key evolutionary moments 
that led to enveloped living systems (Figure 1-2 on p. 4).
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1.1: The Evolution of Life on Earth    3

fiGure 1-1 Characteristics of living systems. Each characteristic distinguishes living organisms from 
inanimate matter.

Complexity and organization
Eukaryotic cells are subdivided 
into compartments called 
organelles that perform 
specialized tasks within the cell. 
Multicellular organisms consist 
of tissues, organs, and organ 
systems. Larger organizational 
categories are species, 
populations, and ecosystems.

Homeostasis   Within a living cell, parameters such as 
pH, temperature, ion concentrations, and biomolecule 
concentrations are all maintained within narrow limits 
by transport of required substances across cell 
membranes and by a regulated internal metabolism.

Energy acquisition   To maintain 
both complexity and homeostasis, 
living systems undergo a constant 
struggle to obtain energy from 
sunlight, the environment, or other 
organisms. This cell is engulfing 
nutrients from its environment.

Adaptation   Cells and organisms are sensitive 
and respond to their external environment. In this 
case, the cell is increasing its internal salt 
concentration (blue dots) to adjust to ionic 
changes in the external medium.

Transmission of genetic information 
between generations   Reproduction to 
produce new cells or organisms is essential for 
a species to remain part of the biosphere for 
more than one generation. Here, the genetic 
material, housed in chromosomes (dark blue), 
has been duplicated and is in the process of 
separating into daughter cells.

Growth, development, and death
Each organism has a finite life cycle. 
The cell shown is in the telophase 
stage of mitosis, or cell division.

Interactions   Each living cell interacts with other 
cells or organisms and with its environment.

The final two requirements—catalysis and biological 
information—are particularly important, truly distinguish-
ing a living organism from an inanimate object. These re-
quirements are the domain of molecular biology. The ener-
gy transactions that support homeostasis (the maintenance 
of parameters such as pH and biomolecule concentrations 
within the narrow range needed to support life) and enable 
the transmission of genetic information from one genera-
tion to the next are initiated by powerful catalysts called 
enzymes. Enzymes are highly specific, and each enzyme 
accelerates only one or a small number of chemical reac-
tions. Most enzymes are proteins, although a few catalytic 
RNA molecules play important roles in cells. The catalysts 
that a particular organism possesses define which reactions 
can occur in that organism. Enzymes determine what a cell 
takes in for nourishment, how fast the cell grows, how it 
discards wastes, how it constructs its cellular membranes, 
how it responds to other cells, and how it reproduces.

The presence of enzymes in a cell depends on the 
faithful transmission of the genetic information that en-
codes them from one generation to the next. Enzymes, 
as well as the myriad other proteins and RNA mol-
ecules that regulate their synthesis and function, are 
the actual molecular targets of evolution. When a cell 
acquires a new function, it generally reflects the pres-
ence of a new enzyme or set of enzymes, or an altera-
tion in the regulation or function of an existing enzyme 
or process. The new functions arise through changes 
in genes—changes that are shaped by evolutionary pro-
cesses. In the biosphere of today, DNA is the standard 
macromolecule for the long-term storage and transmis-
sion of biological information. It is exquisitely adapted 
to that function (Figure 1-3 on p. 5). However, as we 
shall see, there were probably stages in the evolution 
of life when DNA did not serve as the primary genetic 
library in living systems. 
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4   cHAPter 1: Evolution, Science, and Molecular Biology

evolution underpins Molecular Biology

In 1973, the geneticist Theodosius Dobzhansky pub-
lished an article in the professional journal The American 
Biology Teacher entitled “Nothing in Biology Makes 
Sense Except in the Light of Evolution.” This sentiment 
has special meaning in molecular biology, because the 
pathways and processes in living systems give rise to  
the genetic variation on which natural selection acts 
(Figure 1-4). They also inform the ongoing investiga-
tions into how life arose on Earth. 

Evolution relies on spontaneous and generally ran-
dom changes in an organism’s genomic material, called 
mutations. In spite of the elaborate cellular mechanisms 
we consider in this book, all of which help ensure accurate 
transmission of genetic information from one generation 
to the next, mutations regularly occur. Mutations can 
be as simple as a change in a single base pair of DNA or 
base of RNA or as substantial as the inversion, deletion, 

fiGure 1-2 Vesicles undergoing growth and division in 
the laboratory. Vesicles, fluid-filled cavities or sacs enclosed 
by lipid molecules (green circle in the first panel), can be 
made from fatty acids. Fatty acids in aqueous solution are 
organized as spherical droplets called micelles. As the 
external concentration of fatty acids increases (more local 
micelles), the mostly spherical vesicles (top) grow slowly into 
a filamentous form (bottom) by incorporation of the added 
fatty acids. The micelle concentration declines as the micelles 
are incorporated into the larger vesicles. Gentle agitation 
produces a solution that again consists of mainly spherical 
vesicles, as shown in the schematic. [Source: J. Am. Chem. Soc. 
134(51):20812–20819, 2012, Fig. 7.]30 mm

(a)

(b)

Vesicle

Micelles

Gentle agitationLengtheningBudding

or insertion of large segments of genetic material. As we 
will be discussing in detail, errors can arise during repli-
cation (Chapter 11), and DNA damage can lead to perma-
nent mutation when repair systems (Chapter 12) go awry. 
Larger chromosomal changes can arise from recombina-
tion (Chapter 13) or transposition (Chapter 14). Some 
mutations affect genes directly; others affect the ways in 
which DNA is transcribed into RNA or RNA is processed 
or translated (Chapters 15–18). Relatively minor changes 
in genes involved in regulatory processes (Chapters 19–
22) can give rise to dramatic changes in the organism; this 
realization has created a new field, essentially a modern 
merger of the fields of evolutionary and developmental 
biology, dubbed “evo-devo” (described in Chapter 22). All 
the processes that contribute to information transfer are 
highly, but not perfectly, accurate, and the slow accumu-
lation of alterations is inevitable. Many orga nisms even 
have mechanisms to speed up the pace of mutational 
change, which they draw upon in times of stress.
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1.1: The Evolution of Life on Earth    5

An understanding of these processes has also given 
us insights into the origins of life and the process of 
evolution. Continuing explorations of RNA structure 
(Chapter 6) and metabolism (Chapters 15 and 16) have 
informed new theories of prebiotic evolution. The 
genetic code (Chapter 17) provides a particularly vivid 
look at the shared history of every organism on Earth.

Molecular biology has provided the enzymes that 
make most of the methods of biotechnology possible 
(Chapter 7). These increasingly powerful methods for 
studying the genes of many different organisms allow 
us to trace their evolution. Through modern genomics 
(Chapter 8), molecular biology is opening a window onto 
evolution that Charles Darwin would marvel at.

The interrelationship of molecular biology and evo-
lution is of more than academic interest. Human be-
ings exist in a world where every organism continues 
to evolve. Microorganisms, with their short life cycles, 
evolve most rapidly (Highlight 1-1). Of special concern 
are human pathogens, as well as the microorganisms, 
fungi, insects, and other organisms that affect our food 
crops, livestock, and water supply. Molecular biology 
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fiGure 1-3 DNA structure. Because of its structural properties, DNA is well suited for long-
term information storage. Genomic DNA almost always consists of two complementary strands of 
deoxyribonucleic acid. Each strand has a backbone consisting of deoxyribose residues connected by 
phosphate groups, and a base is attached to each ribose. Strand complementarity is enforced by specific 
interactions between the bases in each strand. The interactions create base pairs. (a) The G ——— C and  
A —— T base pairs are similarly sized, giving the DNA double helix a uniform width and allowing base 
pairs, in any sequence, to stack. Complementary base pairing facilitates replication and transmission from 
one generation to the next. (b) The double-helical structure and base stacking confer stability. Major and 
minor helical grooves in the structure provide access to genetic information for a wide range of DNA-
binding proteins. The uniform structure of the DNA backbone allows the synthesis of very long polymers.

fiGure 1-4 Pathways of biological information flow. In 
almost all living systems, information is stored in DNA, then 
transcribed into RNA, which is processed and translated into 
protein. DNA is replicated to prepare for cell division. The transfer 
and maintenance of genetic information are regulated at each 
of these stages. Exceptions to this general pattern are found 
in certain viruses (RNA viruses and retroviruses) that store their 
genetic information in RNA. Viruses with RNA genomes make 
use of additional pathways (denoted by the red arrows)—RNA 
replication and reverse transcription (creation of DNA from RNA, 
instead of the other way around)—to maintain their genomes. The 
yellow highlighting represents points of regulation. Processes in 
the gray shaded box, along with occasional errors in replication, 
reverse transcription, and RNA replication, give rise to genomic 
alterations (mutations) that fuel evolution.
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provides essential tools for use in tracking pandem-
ics, investigating new microbial pathogens, identifying 
the genes underlying human genetic diseases, solving 
crimes, tracing the origin of diseases, treating cancer, 
and engineering microorganisms for new purposes 
in bioremediation and bioenergy. All of these efforts 
rely heavily on the concepts of evolutionary biology. 
Indeed, modern society relies on countless innovations 
in medicine and agriculture that would not exist but for 
Darwin’s great insight.

life on earth Probably Began with rnA

About 4.6 billion years ago, the sun and Earth and the  
other planets and asteroids of our solar system were 
formed. Within the first billion years of our planet’s exis-
tence, life appeared on its surface. How did this happen, 
and how likely is it that this has happened on other, 
similar worlds? Modern geologists, paleontologists, and  
molecular biologists are slowly piecing together the his- 
tory of life on Earth from the rich trove of clues in the  

observing evolution in the laboratory

The bacterium Deinococcus radiodurans has a remarkable 
capacity to survive the effects of ionizing radiation (IR, or 
gamma rays). A human being would be killed by exposure 
to 2 Gy (1 Gy (gray) 5 100 rads) of IR, but cultures of 
Deinococcus routinely survive 5,000 Gy with no lethality. 
Deinococcus is a desert dweller, and this characteristic 
reflects its adaptation to the effects of desiccation. In dry 
conditions, the bacterium cannot grow and its cellular 
metabolism shuts down. Spontaneous damage to the 
cellular DNA accumulates, including strand breaks. DNA 
repair processes, which require ATP generated by cellular 
metabolism, do not take place. However, the bacterium 
can repair its genome quickly when conditions favorable for 
growth return. Like desiccation, IR also generates numerous 
DNA strand breaks, and that same extraordinary capacity for 
DNA repair is put to use after exposure to IR.

How long does it take for a bacterium to evolve 
extreme resistance to IR? A recent study demonstrated that 
Escherichia coli, the common laboratory bacterium, can 
acquire this resistance by directed evolution. Twenty cycles of 
exposure to enough IR to kill more than 99% of the cells, with 
each cycle followed by the outgrowth of survivors, produced 
an E. coli population with a radiation resistance approaching 
that of Deinococcus. The entire selection process can 
be achieved in less than a month. Complete genomic 
sequencing of cells isolated from the evolved populations 
typically reveals 40 to 80 mutations. The answer to survival 
varies from cell to cell, with different cells displaying different 
arrays of mutations, even when they come from the same 
evolved population. In just a single, small bacterial culture, 
evolution can take many paths, and a variety of solutions are 
found that lead to acquisition of a new trait. 

This is just one of many experiments demonstrating that 
dramatic changes in microorganisms can be readily generated 
and observed in the laboratory within short periods of time. 
The same kind of evolutionary processes are occurring 
constantly in microorganisms in our environment, including 
human pathogens. When AIDS appeared as a new threat to 
human health in the early 1980s, the power of evolutionary 
theory was quickly on display. The causative agent, HIV, 
was soon isolated and its genomic sequence determined. 

Characterizing this novel and very dangerous virus from 
scratch would have delayed treatments for years. But scientists 
had a shortcut at hand. A deep reservoir of information about 
viruses and their evolutionary relationships had already been 
built up over decades of research. The small HIV genome 
thus held all the clues that science needed for a rapid 
understanding of its infection cycle and the development 
of a medical response. Its genome revealed that HIV is a 
type of RNA virus called a retrovirus, with clear evolutionary 
relationships to other viruses that were already known and 
understood (Figure 1). It was immediately evident which HIV 
genes encode the enzymes essential to the virus life cycle, 
and these enzymes rapidly became drug targets. One result 
was the development of highly effective treatments at an 
unprecedented rate, ranging from AZT to protease inhibitors 
(see Highlights 5-2 and 14-3 for more detailed descriptions of 
the retrovirus life cycle). Millions of lives have been saved, in 
large measure because all biological and medical research is 
carried out in the context of evolutionary theory.

evolutionHiGHliGHt 1-1

Capsid surrounding
genomic RNA

Cell

Envelope

fiGure 1 HIV is a retrovirus. Like other retroviruses, it has 
an RNA genome condensed within a proteinaceous capsid. 
The capsid is surrounded by a spherical lipid envelope 
derived from its host cell’s cytoplasmic (plasma) membrane. 
Its relationship to other retroviruses is not just structural but 
embedded in definable ways in its chromosome. [Source: Hans 
Gelderblom / Getty Images.]
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geologic, fossil, and genomic records. A plausible sequence 
emerges, providing a wide range of hypotheses that can  
be tested using modern chemical and physical methods.

The first few hundred million years were a time of 
prebiotic chemistry (Figure 1-5). No life was present, 
but chemical reactions were happening everywhere. The 
atmosphere contained primarily water, methane, ammo-
nia, hydrogen, nitrogen, and carbon dioxide. Reactions 
driven by the constant stream of energy coming from the 
sun were slowly yielding more complex molecules such 
as simple sugars, amino acids, and nucleotide bases. And 
the accumulation of organic material was supplemented 
by materials from a multitude of collisions between early 
Earth and meteors laden with organic matter. Prebiotic 
chemistry is being studied by a large community of re-
searchers. A small sampling of their work is presented 
in the How We Know section at the end of this chapter. 

Over a period of millions of years, the accumula-
tion of reaction products yielded a soup containing mol-
ecules and polymers. As they grew increasingly complex, 
particular polymers acquired the capacity to duplicate 
themselves. The first self-replicating polymer, possessing 
two of the key requirements for life—catalysis and biolog-
ical information—might be considered the first life form.

We do not know what this first “living” polymer 
was. However, modern molecular biology has given 
us many reasons to think that RNA either was the first 
self-replicator or arose as a much-improved descendant  

of that first self-replicator. RNA differs from DNA only in 
that it uses ribose instead of deoxyribose in its backbone. 
That single additional hydroxyl group in each monomeric 
unit of the polymer allows RNA to take up a plethora of 
complex structures that are inaccessible to DNA. The 
structural malleability of RNA gives it a capacity for both 
catalysis and information storage that has made it indis-
pensable for life, from its beginnings to the present time. 

The RNA world hypothesis was first proposed as a 
stage in evolution by molecular biologists Carl Woese, 
Francis Crick, and Leslie Orgel, in separate papers 
published in the late 1960s. The hypothesis describes a 
living system (or set of living systems) based on RNA. 
In this system, a variety of RNA enzymes could catalyze 
all of the reactions needed to synthesize the molecules 
required for life from simpler molecules available in 
the environment. The RNA enzymes would include 
replicators to duplicate all of the RNA catalysts. The 
“RNA organism,” out of equilibrium with its surround-
ings, would have to be defined by a boundary. The exper-
iments of Szostak and colleagues show one way in which 
lipid-enclosed RNA systems can arise (see the How We 
Know section at the end of this chapter).

Four more-recent lines of evidence have added much 
breadth and depth to the RNA world proposal. The first 
was the discovery by Thomas Cech and Sidney Altman, 
in the early 1980s, of catalytic RNAs, or ribozymes—
enzymes that are made of RNA instead of protein. Thus 

CO
2 NH

3

CH
4

N2 H
2
O

H
2

HCN

Sun

>3.5 billion years ago

Water

Lightning Lightning

Volcanism Volcanism

Aldehydes

Ketones

Water

Brackish water

Amino acids

Sugars

Polymers
(accumulating
over hundreds

of millions
of years)

Nucleotide bases
(purines and
pyrimidines)

fiGure 1-5 Prebiotic chemistry. Over hundreds of millions of years, and with constant energy 
input from solar radiation, volcanism, and other sources, the molecular constituents of Earth’s early 
atmosphere were converted from simple molecules such as water, methane, ammonia, hydrogen, 
nitrogen, and carbon dioxide into a range of more complex organic molecules and polymers. The 
resulting tarry substance may have coated the planet’s surface and turned bodies of water into 
concentrated and complex solutions.
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we learned that some extant RNA molecules catalyze 
reactions and so possess both of the key conditions for 
life—biological information and catalysis. In modern or-
ganisms, ribozymes catalyze a relatively narrow range of 
reactions, such as the cleavage and ligation of other RNA 
molecules—a range insufficient to support an RNA world.

What is the real catalytic potential of RNA? The sec-
ond line of supportive research demonstrated that RNA 
molecules generated in the laboratory can catalyze al-
most any imaginable reaction needed in a living system—
certainly a range of reactions much broader than those 
attributable to ribozymes existing today. Early RNA mol-
ecules could clearly have catalyzed all of the reactions 
required to set up a primordial cellular metabolism. 

The third and fourth discoveries have further broad-
ened our perspectives on RNA function. We now know 
that in ribosomes, the large ribonucleoprotein complexes 
that translate RNA into protein, the RNA is the active 
component with the capacity to catalyze protein synthe-
sis (Figure 1-6; see also the Moment of Discovery for 
Chapter 18). Finally, and most recently, RNA sequences 
capable of simple forms of self -replication have been dis-
covered (discussed in Chapter 16).

Ongoing research thus makes it possible to visualize a 
highly plausible sequence of events unfolding on the path-
way from prebiotic soup to living systems. Arising from a 
myriad random primordial polymers, an RNA world came 
into being and gradually became more complex. An RNA 
capable of reliable self-replication may have been the first 
living entity. Self-replicators would have diversified to syn-
thesize other ribozymes, leading to an RNA-based metabo-
lism capable of providing a greater supply of needed RNA 

precursors. Ribozyme groupings became enclosed within 
lipid membranes. Particular groupings were successful, 
resulting in the first cells and a capacity to maintain a 
metabolic state out of equilibrium with the surroundings. 
As the RNA molecules in those cells increased in size and 
structural complexity, a need for stabilization and auxil-
iary functions arose. Peptides (proteins) were synthesized 
to neutralize the negative charges of the phosphates in the 
RNA backbone, to stabilize RNA structure in other ways, 
and to augment early metabolism. As more peptides were 
synthesized, some with catalytic activities arose. Proteins 
gradually supplanted RNA as catalysts, because the great-
er catalytic potential of proteins yielded an advantage. 
The protein world emerged, but not without retaining 
important vestiges of the RNA world (ribosomes and some 
other RNA catalysts), as we find them today.

the last universal common Ancestor  
is the root of the tree of life

Countless nascent life forms probably arose from the 
primordial soup, along with many biological advances that 
improved their fitness. Successful combinations of RNA 
catalysts gave way to systems based on protein catalysts. 
Improvements in catalytic efficiency appeared, along with 
systematized genetic codes to link genetic information in 
RNA and DNA to protein sequences. Additional changes 
facilitated cellular metabolism and reproduction. Protein 
synthesis was systematized through the evolution of 
an efficient ribosome machine. RNA became more 
specialized for information storage and transmission. Cell 
membranes became more structured and specialized, 
eventually including mechanisms to selectively transport 
materials into and out of the cell as needed. And some 
processes became regulated. In this way, a variety of 
primitive cells may have evolved—each of them a viable 
living system. Organisms living today exhibit shared 
properties, telling us that one of these early experimental 
cells won out over the others. This cell, sometimes called 
LUCA (last universal common ancestor) (Figure 1-7), 
ultimately gave rise to all life now present on Earth. 

LUCA is a special source of fascination for molecu-
lar biologists. Although LUCA probably lived more than 
3 billion years ago, our speculation about what this cell 
was like is informed by experiment. One approach is to 
determine the minimum protein and genetic require-
ments for life. Attempts to create a minimal life form, 
either by reconstituting basic components or by taking 
bacteria and stripping them of all unnecessary parts, are 
underway in laboratories around the world. These exper-
iments are not only defining properties that must have 
been present in LUCA; they are also setting the stage for 
the laboratory generation of engineered bacterial cells 
that can be used to manufacture chemicals for bioen-
ergy, agriculture, and medicine. 

RNA

Protein

fiGure 1-6 The 50S subunit of a bacterial ribosome. The gray 
parts of the subunit are RNA and the blue parts are protein. The 
structure is a huge ribozyme that evolved for the synthesis of 
protein. [Source: PDB ID 1VSA.]
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Another approach to understanding LUCA is to sur-
vey all types of living systems on Earth to determine 
which genes or characteristics are universal. The only 
genes that are truly universal in living systems are those 
encoding the cellular machinery for protein synthesis 
and some components of RNA transcription. All organ-
isms also share (with very minor modifications discussed 
in Chapter 17) the same genetic code. That same code 
must have been present in LUCA. To support protein 
synthesis and RNA synthesis, a simple metabolism must 
have been present that allowed the uptake of chemical 
energy and its use to synthesize amino acids, nucleo-
tides, and whatever lipids existed in the cell membrane 

from precursors available in the environment. The study 
of LUCA is described in more detail in Chapter 8.

The appearance of LUCA signaled the beginning of 
biological evolution on Earth. New types of cells gradually 
appeared, and new environments were exploited. The first 
cells were capable of taking up organic molecules from 
their surroundings and converting them to the molecules 
needed to support protein and RNA synthesis. Cellular 
complexity resulted in ever-increasing requirements for 
cellular genomic information. DNA, with a more uniform 
structure and some stability advantages relative to RNA, 
may first have appeared in viruses. It then gradually sup-
planted RNA as the most stable platform for the long-
term storage and transmission of genetic information, 
and DNA replication and systems for the segregation of 
replicated DNA chromosomes into daughter cells evolved.

The early single-celled organisms derived from 
LUCA diversified to inhabit all niches in the ecosystem of 
this early Earth. The diversification eventually generated 
the three major groups of organisms that we recognize 
today: bacteria, archaea, and eukaryotes (Figure 1-8).

Many additional events helped shape the life we 
see around us. Notably, photosynthesis appeared about  
2.5 billion years ago, as evidenced by the sudden rise  
in the concentration of atmospheric oxygen documented 
in the geologic record. As cells engulfed other cells, some 
endosymbiotic relationships developed and became per-
manent. The engulfed cells became organelles within 
their hosts more than 1 billion years ago, and we see these 
organelles today as chloroplasts and mitochondria. Loose 

Simple metabolism
RNA genetic material
Primitive ribosome and protein
   biosynthetic apparatus
Transcriptional machinery
Genetic code

fiGure 1-7 The last universal common ancestor. LUCA and 
its immediate descendants probably had a simple metabolism 
and a form of transcriptional machinery to replicate their 
RNA genome. A primitive ribosome and protein-biosynthetic 
apparatus would have used the same universal genetic code 
found in all modern organisms.
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fiGure 1-8 The universal tree of life. A current version of the tree is shown here, with branches 
for the three main groups of known organisms: bacteria, archaea, and eukaryotes. Particular types of 
bacteria, engulfed by other cells, gave rise to mitochondria and chloroplasts. [Source: Data from J. R. 
Brown, “Universal tree of life,” in Encyclopedia of Life Sciences, Wiley InterScience (online), 2005.]
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